
7 AD-AilS 092 NEW MEXICO STATE UNIV LAS CRUCES DEPT Of ELECTRICAL -ETC FIG, 9/2DESIGN METHODOLOGY FOR MULTIPLE MICROCOMPUTER ARCHITECTURES.(U)
G JUL 62 6 M FLACHS. 6 M CHAVEZ. 8 N NALM OAA29-?g-C-01ooUNCLASSIFIED NMSUR82-1 R161.-L

*CI

NONE -

DESIGN METHODOLOGY FOR MULTIPLE MICROCOMPUTER ARCHITECTURES

Department of Electrical and Computer Engineering

New Mexico State University

NMSU-TR-82-1 /

Final Report For

Grant DAAG29-79-C-0100 F..T !C

AUG l 9

Submitted to:

U. S. Army Research Office

Box 12211

Research Triangle Park, NC 27709

July 1982 -

0'4ed

I d

DISCLAIMIER

l'

The findings of this report are not to be construed as art official

Department of the Army position unless so designated by other

authorized documents.

i €i

Accession Pr

I:

I DTIC 3

D ep a t me t o th A r y p si t on nl e s s d e ig n ted by o r

auhoiebdouens

• ~DTIC TV B,-3

Just IfIcet Ion--..

! __D~~lat r ib,.tt ny A v a il . b i: ty, C o r 9s

c o p, ,>' . : " a n , i / o r
IEC jt : Specini

i M

SECURITY CLASSIFICATION OF THIS PAGE (Mhon Date Wnlered)

REPORT DOCUMENTATION PAGE BEFORE COMPLETMG FORM

1. REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (And Subttle) S. TYPE OF REPORT & PERIOD COVERED

Design Methodology for Multiple Microprocessor Final Report

Architectures
6. PERFORMING ORG. REPORT NUMBER

7.-AUTHOR(,) S. CONTRACT OR GRANT NUMBER(&)

Dr. G. M. Flachs, G. M. Chavez, B. N. Malm DAAG29-79-C-OlO0

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA & WORK UNIT NUMBERS

New Mexico State University
Las Cruces, NM 88003

If. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

U.S. Army Research Office July 1982
Box 12211 ,3. NUMBEROF PAGES

Research Triangle Park, _NC 27709
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) IS. SECURITY CLASS. (of this report)

Unclassified
IS. DECL ASSI FI CATION/DOWNGRADING

SCHEDULE

IS. DISTRIBUTION STATEMENT (of this Report)

'Approved for public release; distribution

unlimited.

* 17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, If different fram Report)

18. SUPPLEMENTARY NOTES THE VIEW, OPINIONS, AND/OR FINDINGS CONTAITJ'n IN THIS REPORT
ARE THOSE OF THE AUTHOR S) AND S!U1j!..) Y,- -..- C-9VKST RUED AS
AN OFFICIAL DEPARTMENLT OF THE AR M' PSZ !'N, PC.ICY, OR DE-
CISION, UNLESS SO DESIGNATED BY OTHER OOCUMENTATJON.

19. KEY WORDS (Continue on reverse side if necessary end identify by block number)

Design Methodology Multimicro Architecture

Multiprocessor Design Fault Detection Model

Concurrent Processing Model Real-Time System Design
Process Model

20. ABSTR ACT (Cmte sm reverse ad Of nee"my a identify by block nuamber)

2 A mathematical model is developed for designing and analyzing multiple
microcomputer architectures. The model combines a user application algorithm,
a generalized distributive operating system, and a generalized multiprocessor
architecture into an integral system representation. When applied to real-
time design problems, it provides a method to establish the processing and
communication resources required to meet real-time constraints.

DO WJM i 1473 Voa* or Wov asis OSL.TE

SE$1CITY CLASSIFICATIOM OF TIhS PAGE (Wh11 Dote RXROa*

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION 1

II. SUMMARY OF MAJOR RESULTS 4

A Multimicro Design Model 5

Task Model 6

Process Model 13

Concurrent Multiprocess System Model 17

A Generalized Multimicro Architecture 19

Bus Processor and Communication Structure 20

Prototype Multimicro Architecture 21

A Multimicro Fault Diagnostic Model 24

Fault Diagnostic Model 24

III. PERSONNEl, SUPPORTED AND DEGREES GRANTED 26

IV. REFERENCES AND PUBLICATIONS 27

Publications in Preparation 28

it
Kl ..

LIST OF FIGURES

Figure Page

1. Process Structure 5

2. Sequential Program Structure 6

3. Transition Structure 8

4. Transition Execution 8

5. Process Model 15

6. Generalized Multimicro Architecture 18

7. Bus Processor Structure 20

8. Prototype Multimicro Architecture 23

L

I. INTRODUCTION

There is a rapidly growing interest in applying multimicro architectures

to solve real-time processing problems. Tremendous computing pover is avail-

Rhle from multiple microcomputer architectures; however, it is difficult to

realize this power with current design methodologies. There are several reasons

why designers find it difficult to realize multimicro architectures. First,

the design of these architectures requires new problem formulation concepts

and analysis tools to utilize concurrent processing techniques. Secondly,

there is a need for a better practical and theoretical understanding of the

11 performance that can be achieved with multimicro architectures in the real-

time environment. Thirdly, there is a need for better hardware and software

design tools for multimicro architectures. Finally, more research and exper-

ience is required to insure performance, reliability, and maintenance
of these

architectures.

Our research focused the art of designing and applying multimicro archi-

tectures on three major topics. These topics are:

- a multimicro design model

. a generalized multimicro architecture

. a multimicro fault diagnostic model.

The first problem concerns the development of mathematical foundations

for modeling, designing, analyzing, and applying multimicro architectures to

real-time processing problems. A new mathematical model [3, 19] is introduced

to model and analyze the dynamic behavior of a user application on a multimicro

architecture. The model combines a user application algorithm, a generalized

distributed operating system, and a genernlized multiprocessor architecture

into an integral representation of the system. The user application is repre-

sented by a concurrent network of user processes. Each user process consists

S V I |i l

of the enabling conditions, the resulting conditions, and a sequential program

with associated data structures. These processes are defined so that the rich

parallelism is between the processes rather than within them. The essential

functions of a distributed operating system are included in the model to direct

the execution of the user processes among the available processing and communi-

cation resources. These operating system functions include process scheduling

and resource management activities. Finally, the multiprocessing architecture

is represented as a constrained set of processing and communication resources

in the model. When the model is applied to a user real-time processing prob-

lem, the analyst can establish the appropriate processing and communication

resources required to meet real-time processing constraints.

The second problem concerns the development of a generalized multimicro

architecture and the establishment of theoretical and practical performance

properties. The basic structure of the architecture is derived from our math-

ematical model for multimicro architectures which explicitly relates the user

concurrent algorithm and a concurrent operating system to the multimicro arch-

itectures. The architecture [18, 201 consists of a loosely connected set of

multimicro clusters. Each cluster is capable of stand-alone operation or

working as an integral part of a collection of clusters. The operating system

is distributed among the processing units in the architecture. The processing

units are interconnected by a local communication system within a cluster and

a global communication system between clusters. Each communication system

consists of a collection of independent, directly connected, and shared buses.

The bus protocol supports a multiaccess broadcast protocol similar to Ethernet

communications. The physical buses can be realized with a simple two-wire

RS-232 bus using standard UARTS and bus drivers, or for a higher performance

the buses can be realized with an Ethernet communications network. The archi-

tecture is modular and uses standard processing modules that are commercially

2

3 I I l

available. The decentralization of the operating system greatly simplifies

the software architecture to a set of standardized software modules that are

realized with programmable read-only memory modules. A dynamic concurrent

multiprocess model is presented for the geaera.ized multimicro architecture

that provides design and performance guidelines for real-time applications.

The third problem concerns the development of an analytical model for

characterizing the dynamic behavior of faults in a multimicro architecture.

An analytical Fault Diagnostic Net (FDN) model [10, 15] is formulated to per-

form on-line fault diagnostics for real-time processing problems. Using a

built-in-test (BIT) processor to monitor and analyze a processor's internal

bus activity, the model characterizes the relationships between the recorded

activity and the faults to be detected. Algorithms and theorems are given

for designing diagnosable multimicro architectures.

A summary of the major results of the research is presented in Chapter 2.

A list of the personnel supported with degrees granted is given in Chapter 3.

A list of publications, technical reports, and dissertations resulting from

the grant is given in Chapter 4.

• I.

II. SUMMARY OF MAJOR RESULTS

Recent VLSI advances in microprocessor technology is the driving force

motivating the application of multimicro architectures to real-time processing

problems. The primary objective of multimicro architectures is to utilize

the attractive computing power, size, and cost/performance ratio of the VLSI

chips available. The approach currently used to design multimicro systems is

to select an attractive architecture, design the hardware architecture and

interconnection network, design the software architecture, and integrate the

hardware and software architectures to realize the system. When the system

is built, performance tests are made to verify the performance and reliability

of the system. Expensive and time-consuming design changes in hardware and

software are often necessary. The resulting systems often have unique hard-

ware architectures that are difficult to document and maintain. Each design

is a one-time experience, and little knowledge and design capability is car-

ried over to other problems. This inability to transfer multimicro design

knowledge is true both in industry and in university environments. In the

industrial environment, it reduces productivity and increases the cost of

products. In the academic environment, it greatly reduces the research creat-

ivity and productivity. The key to sharing multimicro design knowledge is in

the development of mathematical foundations for designing and analyzing multi-

micro architectures.

System modeling techniques, operating system concepts, concurrent algo-

rithm models, and computer architecture concepts are combined with parallel

processing methods to establish an analytical basis for modeling, analyzing,

and designing multimicro systems. A concurrent multiprocessor model is intro-

duced for designing and analyzing the performance of multimicro architectures.

The model integrates the functional behavior of a distributive operating sys-

4

3i

tem and a generalized multimicro architecture with the user real-time concur-

rent algorithm to characterize the dynamic behavior of the system.

2.1 A Multimicro Design Model

A real-time concurrent algorithm is viewed as a set of processes along

with a set of constraints which define their order of execution. The processes

are defined so that the rich parallelism is between the processes rather than

within them. A process consists of enabling conditions, resulting conditions,

conditional test, private data structure, and a structured IF-THE? ".SE sequen-

tial program.

Enabling
Conditions

Resulting
Conditions

Private
Data

• Conditional

Test

Sequential
Program

Figure 1. Process Structure

The enabling conditions are the constraints that must be satisfied before the

process can execute. The resulting conditions are the results that are sent

to enable other processes. The private data define the data structures used

by the process. The sequential program has an IF-THEN-ELSE structure which is

controlled by a conditional test. The structure of the sequential program is

shown in Figure 2.

II 5

II

ACTIVATION (OS)

IF CONDITION
THEN

TRUE PROCEDURE
ELSE

FALSE PROCEDURE
ENDIF

TERMINATION (OS)

Figure 2. Sequential Program Structure

The activation functions are performed by the operating system which

activates and links the data structures to the process. Depending upon the

condition, either the true or false procedure is executed. During the process,

execution results are formulated as output messages and placed in the output

buffer. The termination functions are again performed by the operating sys-

tem, which terminates the process and sends the messages stored in the output

buffer. The key idea is to place the burden of data linking and message send-

ing on the operating system rather than on the process. This greatly re-uces

the effort required to write the process code, and it makes the process code

independent of the operating system and the hardware environments.

Task Model

An extended dynamic Petri model is introduced t, model the processes and

* their interrelations. This model is called the Task Model. The Task Net con-

sists of a structured interconnection of transitions and places. Transitions

represent the processes and define the enabling conditions, represent process

execution, and define the result conditions. The places represent information

points and define the flow of information and process constraints in the net-

work.

6

By defining a finite and bounded execution time for each process, it is pos-

sible to establish the dynamic behavior of the network in terms of the motion

of tokens in the model. With this interpretation, the presence of a token in

a place implies that the information is available, and the presence of a token

in a transition implies that the process is currently executing. Since many

transitions can simultaneously have tokens, the model has the ability to des-

cribe concurrent processing behavior.

The dynamic behavior of Task Net is generated by the execution of proces-I

ses at the transitions. A transition can be initiated if and only if the

transition is idle (no token present) and all input arcs to the transition

I, come from places containing at least one token (information ready). When a

transition is activated, one token is taken from each input place (places

which have an inDut arc to the transition), and one token is placed in the

transition to indicate the process is executing. A control place, represented
I

by a demand symbol, is associated with a transition to direct the process ex-

ecution to the true process procedure if a token is present or to the false

process procedure if a token is not present. The presence or absence of a

token at the control place does not affect the enabling of the process. When

the transition is activated, a token is taken from the control place if one is

present. At the completion of the process execution, the token is removed
I

from the transition, and one token is placed in each output place specified

by the transition.

The structure of a transition is shown in Figure 3. The input places

{P1,P2 ,P3} are the transition input places, and they define the enabling con-

ditions for the transition. The control place C I directs the process execu-

tion to either the true or false procedure. The output places P and P are
4 5

results from the true procedure. The output places P and P are results from
6 7

the false procedure.

- I 7

-

IP T I I I I|i P 5i

P3 4P6
T.

7

Figure 3. Transition Structure

The process of executing a task is shown in Figure 4.

BEFORE DURING AFTER

4(a)

BEFORE DURING AFTER

4(b)

Figure 4. Transition Execution

8

L\

A nonlinear discrete system model is developed to establish and analyze

the dynamic behavior of the Task Model. The model is developed in matrix form

using standard APL matrix operators. The dyadic APL operators o C

on n x m matrices A and B are used to define a binary n x m matrix A o B whose

entries are 1 iff a.. o b. . for each i and j.

The Task Model is a directed graph G = (T,P,A) of transitions (processes),

places (information points), and directed arcs with a discrete system of execu-

tion rules for moving the tokens in the graph at integral time units. The

graph has a finite set of transitions T = {T1IT 2,... ,Tn}, a finite set of

information places P = [P,P 2 ,... ,Pm}, a finite set of control places

CP = {CP1 ,CP2,...,CPn}, and a finite set of arcs A = (TxP)u(PxT). The nodes

of the graph are defined by N = TuP. A marking of the model is defined by

three mappings:

MT : T--O,1}

MP P-*'l =012.

MC : CP-I = 10,1,2,...)

which assign tokens to the transitions (MT), information places (HP), and con-

trol places (MC) respectively. The dynamic behavior of the markings with res-

pect to time plays an important role in the design of concurrent processing

systems.

The tokens in the Task Model move only when transitions are enabled and

completed. For a given transition T., the set of input places (IP), the set

of true output places (TOP), the set of false output places (FOP), and the

control place (CP) are defined by:

IP(Ti) = {e : (P,T)CA)

TOP(T.) = {P (Ti,P)ETA}

FOP(T.) = (P : (TiP)eFA)

CP(T1) = CP.

9

I

where TA 9 TxP is the set of true output arcs, FA S TxP is the set of false

output arcs, and TA v FA=TxP.

A transition T.i is initiated with marking MT and MP iff MT(Ti)=0 and

MP(Ti)>0 for all peIP(Ti). When a transition Ti is initiated, new markings

are generated by:

MT(Ti) = 1,

MP(P.) = MP(P.)-l for all PjIP(T.),

and MC(Ti) = Max [0, MC(Ti)-I}.

When a transition T. completes execution, the new markings are defined by:
1

MT(Ti) = 0

I MP(P.) + 1 if P.6TOP(T i) and MC(Ti)>O

and MP(P) MP(Pj) + 1 if P.sFOP(T i) and MC(T.) =

MP(P.) else.

The Task Model is a system of execution rules for moving tokens in the

graph and a set of vectors R = (e, , V, b, -S S). The vector (t) = (K (T),

K 2(*),...,K m(T)) define the number of tokens at the information places at time
em

T. The vector C(T)=(CI (),C 2 (r),C2 (r),...,Cn(T)) defines the number of tokens

at the control places at time T. The vector V(T)=(VT(T),VF(T)) defines the

time left before completion of the true and false transition blocks. The vec-

tor D=(DT,DF) defines the processing times for true and false transition proce-

dures. The state vector for the system is defined by S(-) = ((-t), I(T))

and S(O) is the initial state vector. The next state mapping 6 : S(T) S(T+I)

defines the system state S(r+I) at time (T+I) in terms of the state S(T) at time

T constrained by the execution rules.

The next state mapping is defined as an ordered set of operations. The

set of all enabled transitions is given by:

EN = {Ti : Ti&T, Vi=O, K.>O ' P &IP(T)}

10i _ _ _

- iI _ IIl l l

and the set FR = PR(EN)CEN defines the transitions that are firable after con-

flicts are resolved by a priority function. The set of executing transitions

is EX = {Ti : T iT, Vi > 11. The set of true and false transitions completing

execution are given by ZT = {Ti : T.&T, VT. = 1} and ZF = {Ti : ET, VF. = 1}.1 1 1 1

In terms of these definitions the Task Model is defined by the following

ordered set of operations:

1. Remove tokens from finished transitions and increment the proper

output places. For each T. Z = ZTUZF
* 1

K .(T+ I) = K (T) + I if P zTOP(T.) and T.rZT

or if P eFOP(T.) and T.sZF.

2. Decrement the processing times of all executing transitions

v.(r+l) = Vi W-I if T.EEX

3. Resolve conflicts between enabled transitions with a transition

priority function

FR = PR(EN)
S

4. Initiate enabled transitious and decrement token counts in the input

and control places. For each T.cFR1

{ DT. if C.>Z! 1 i

I , Vi(c+l) =

DF. if C.1 1

and for each P sIP(T i)

K.(Y+I) = K.(.)-I.

and C (T+l) = Max (, Ci(T) -1)
i

• 1' 11|| -d

These equations form a nonlinear system of difference equations which are

solved to establish the dynamic behavior of the state vectortx) in terms of

the initial marking S(O). The Task Model has important mathematical properties

(191 that allow the behavior of the model to be studied without solving the

nonlinear difference equations. One such property is the reachability tree

that can be obtained from the structure of the Task Model. Deadly embraces

and unbounded synchronization problems can be recognized and solved. The

solution of the model establishes the total concurrency in the application

algorithm since no operating system or architectural constraints are imposed

by the model. If the response of the Task Model does not meet the real-time

constraints, the designer must go back and reformulate the problem to expose

more parallelism in the processes.

f'

II

11

I 1

Process Model

A process model is introduced to model the activation, execution, and ter-

mination of a process on a generalized multimicro architecture under control

of a distributed operating system. The process is constrained to be noninter-

ruptable and nonrecursive. The hardware architecture and the operating system

provide the environment that governs the dynamic behavior of the process. The

process is modeled at a level of abstraction that specifies the tasks in an

operating system associated with allocation, activation, execution, and termin-

ation of the process in a multimicro architecture. The process is modeled with

the Task Model introduced in the previous section. This net of tasks is devel-

oped for a process and the process net is substituted for the application pro-

cess in the concurrent algorithm. The resulting model is called a concurrent

multiprocess system model. The substitution property allows the Task Model to

be used at the application level as well as at the process level to provide

proven designs and implementations on concurrent algorithms of multimicro

architectures.

A process is modeled in a generalized way that focuses on the interrela-

tionships between the process, the multimicro architecture resources, and the

controlling operating system. Transitions in process model represent the tasks

required to initiate, execute, and terminate a process. The architecture re-

sources are modeled as semaphore places that define at any time the resources

that are currently available. The architecture [201 consists of a loosly con-

nected set of multimicro clusters. Each cluster consists of a tightly connec-

ted set of multimicros over a local communication bus structure. The clusters

are connected by a global comunication structure. Both local and global com-S

mmunication systems consist of a collection of independent, directly connected,

and shared buses. The bus protocol supports a multiaccess broadcast protocol

13

V

similar to Ethernet communications. The semaphores that define the architec-

tural resources are:

• WPS is the number of working processors in a cluster

- KPS is the number of kernel scheduling processors in a cluster

* LCS is the number of local communication buses in a cluster

* GCS is the number of global communication buses.

* CLS is the number of clusters in the architecture.

These architectural semaphores are defined by the initial marking of the Task

Model. Consequently, they are easily changed by the analyst to establish the

architectural resources required for the given user application. I

The detailed structure of the process model is given in references [19,

20]. A block diagram is given in Figure 5 to define the major functions pres-

ent in the process model. When the process enabling conditions are satisfied,

the process allocation subnet performs the operating system scheduling functions

required to find an available working processor using the working processor

semaphore. When the process allocation is complete, the operating system sched-

uler obtains the required communication semaphores and sends an activation mes-

sage to the kernal operating system in the working processor. When the working

processor receives the activation message, the process is loaded and execution

begins. When the process is finished, the results are in a message format and

stored in an output buffer. The communication subnet defines the functions re-

quired to obtain the communication semaphores and send the messages over the

local and global communication buses. The process is then deactivated and

tokens (messages) are sent to other processes by the scheduling operating sys-

tem.

14S

z z

0 =) 0

E-44

00

t-4 E-

zz

E-4 :Z)

zz
M 0 00

L) W E-4 wH)

9Q 15 P
:n W. ::) .p---

At this point, it is important to observe that operating system, proces-

sing, and communication resources are modeled as resource places (semaphores)

in the process model. The quantity of the resources are easily specified by

the initial marking of the Task Model, and they do not require structural de-

sign changes in the model. The quality (speed) of the resources are specified

by the delay times in the transitions. Consequently, the analyst has a great

deal of architectural flexibility at a parameter level for designing multimicro

architectures. This leads directly into parameter optimization techniques for

optimal design [201.

'1l

16

M WO

Concurrent Multiprocess System Model

At the design application level, a concurrent real-time algorithm is de-

fined in terms of a set of potentially parallel processes and a set of con-

straints which define the communication structure between the processes. The

Task Net allows the designer to formulate a real-time concurrent algorithm

with standard structured programming techniques independent of operating sys-

tem and architecture concepts. The topology of the network defines the pro-

cess communication structure, the transitions define the processes, and the

places define information and synchronization points.

To establish the Task Model, the designer estimates the number of instruc-

tion cycles required to perform the processes and selects an instruction cycle

time for the level of technology desired for the application. At this point,

the Task Model can be analyzed using a reachability tree to locate deadlocks

or unbounded synchronization problems. If the net is bounded (necessary for

practical realization), the potential markings can be established and poten-

tial concurrency analyzed. By solving the model the dynamic behavior can be

analyzed to verify that the real-time processing constraints are potentially

achievable.

The concurrent multiprocess system model is obtained by substituting the

process model for each user process. This is strictly a mathematical substi-

tution operation if the process model presented is acceptable to the designer.

The resulting model includes the dynamic functional effect of the operating

system and architectural constraints. By initializing the operating system

and architectural semaphores, the model can be analyzed with the reachability

tree to establish potential problems. By solving the model, the dynamic be-

havior of the system is established for the given operating system and archi-

tectural resources by providing virtually infinite architectural resources,

17

040

$'4

,'4

E-44

:3: 0 0

~ 00"E-4

E-4i

[-4

U 0)
______ ____ 0

* 18

t

the analyst can establish the timing constraints imposed by the operating sys-

tem. Consequently, the analyst can decompose the timing constraints into appli-

cation algorithm, operating system, and architectural constraints. This provides

a powerful tool to locate and solve processing bottlenecks.

2.2 A Generalized Multimicro Architecture

A generalized multimicro architecture [20] is introduced to support the

process model. The architecture, as shown in Figure 6, consists of clusters

of working processors under the supervisory control of a global control pro-

cessor. The global control processor is responsible for allocating and loading

the processes into the clusters. The cluster control processor is responsible

for scheduling and synchronizing the processes within a cluster. The working

processors perform the process execution. The basic idea is to partition a

large concurrent algorithm into loosely coupled process blocks and assign the

process blocks to the clusters in the architecture. All interprocess communi-

cation information is contained in the process description. When the processes

are allocated and loaded into the clusters, the global control processor sig-

nals the cluster control processors to start execution.

The global communication system connects the global control processor

with the cluster processor. The local communication system connects the cluster

control processor to the working processors in the cluster. Each communication

system consists of a collection of independent, directly connected, and shared

buses. The number of global and local communication buses are design para-

meters. The bus communication bandwidths are parameters that define the pro-

cessing times associated with the local and global communication transitions in

the process model. The bus protocol is not currently modeled in the process

19

model; however, it is a topic of a dissertation (211 that is currently in pro-

gress. Early results from this research and laboratory experiments suggest a

multiaccess broadcast protocol similar to Ethernet communications. The physi-

cal buses can be realized (18] with a simple two-wire RS-232 bus using standard

UARTS and bus drivers. For higher performance, Ethernet channels or synchro-

nous parallel buses can be used to implement the global or local communication

channels.

Bus Processor

Each processor connected to the architecture has a bus processor to sup-

port the multiaccess-broadcast protocol. The bus processor is responsible

for realizing the protocol, sending messages, and receiving messages. To send

a message, the master processor simply places the message in the output buffer

memory (OBM) and sets the output flag (OF). The bus processor monitors the

bus activity, acquires the bus, sends the message, and checks for any errors.

MASTER

PROCESSOR

IF IBM OBM OF BUS PROCESSOR

Figure 7. Bus Processor Structure

20

When a message is directed to the master processor, the bus processor receives

the message, places it in the input buffer memory (IBM), and sets the input

flag (IF). The bus processor is relatively inexpensive 118); and it greatly

reduces the master processor communication load.

The architecture has a modular structure that can be realized with a few

standard modules. These modules include processing units, bus processors, and

communication buses. The processing units can be realized with any single

board microcomputer or minicomputer currently available. It is beneficial for

the processing units to have substantial random access memories to reduce off-

line storage problems. Consequently, the new sixteen-bit microprocessors are

ideally suited for the architecture. The bus processors perform all communi-

cation in the architecture, and they are tightly connected to the processing

units. Finally, the communication buses provide the desired information

transmission medium.

The operating system for the architecture is distributed among the pro-

cessing units. The global control processor is responsible for allocating,

loading, and initiating the processes in the clusters. The cluster control

processor is responsible for scheduling and synchronizing process execution

in the working processors. The operating system in each working processor is

responsible for executing the processes and handling communication with the

cluster control processor. The bus processor communicates with its master

processor and performs all communication functions.

I

Prototype Multimicro Architecture.1

4 A prototype version of the architecture [18] is being developed in our

!I laboratory. The main purpose of the architecture is to provide a practical

testbed to develop and test modeling techniques and operating system concepts.

21

Iw

The architecture is shown in Figure 8. The system uses a Z80 based microcom-

puter system as a control processor to perform both the global and cluster con-

trol functions. Z8000 single board microcomputers are used to realize the

working processor clusters. The physical communication buses are realized

with RS-232 twisted pair cables operating with the standard synchronous SDLC

bit protocol. The baud rate of the channel can operate up to 800K baud rate.

The network layer of protocol is common to all computers in the network. It

is a hardware independent packet protocol similar to the X.25 standard. All

messages between computers are segmented into blocks of bytes, called packets.

There are control packets for sending short control messages and data packets

for sending blocks of data. Each packet has a header which consists of (1)

an ASCII start of text character, (2) a byte that defines the originator of

the packet, (3) a byte that defines the receiver of the packet, (4) a control

byte for sending control information and sequence numbers, and (5) a check

sum error detection byte. At the network layer, acknowledgement messages are

used to acknowledge the error-free reception of messages. If an acknowledge

is not received in a given time interval, the packet is resent and the timer

set again. This process continues until an acknowledgement is received or the

packet is resent five times. When the packet is resent five times, without

an ac:knowledgement, the communication channel is considered down.

A research effort [17] is also being conducted to apply the concepts de-

veloped in this report at the Holloman Air Force Base to loosely coupled mini-

computers at the base. A high-level job control language is being developed

to control clusters of HP1O00 minicomputers for real-time data acquisition

and analysis problems.

* 22

1

t

AMDAHL 470

1200 BAUD Serial Link

I

Z80 BASED MICROCOMPUTER

"CONTROL PROCESSOR"

BUS PROCESSOR

I
Z8OOO0 Z8000

MICRO BMICRO

BPRO BPI MICRO

S

| Figure 8. Prototype Multimicro Architecture

I 23

-~80 Z8000m |-'

|

2.3 A Multimicro Fault Diagnostic Model

A real-time fault diagnostic model [101 is introduced to characterize the

behavior of faults in a multimicro architecture. The basic assumption of the

model is that the behavior of detectable faults can be observed on either the

* |internal or external buses of the architecture. Built-in-test (BIT) processors

are used to monitor the bus behavior of the multimicro architecture. Having

access to the internal bus behavior of the working processors, the BIT proces-

sors records and analyzes the flow of instructions and data on the buses for

possible errors. An analytical fault diagnostic net (FND) model is formu-

lated to characterize the relationships between the recorded activity and the

type of faults to be diagnosed.

Fault Diagnostic Model

The FDN-madel-utilizes-the Task Model introduced earlier. The input to

the model is a sequence of bus activity, called a snapshot. The bus activity

captured by a snapshot is partitioned into a string of input symbols corres-

* ponding to individual bus transfers that are processed sequentially by the FDN.

As the input symbols are processed, the FDN models the flow of diagnostic in-

formation by the movement of tokens among the information places in the net.

When sufficient information is obtained to check a fault, a transition fires

to place a token in a diagnostic place to initiate a checking process and re-

cord the fact that the fault has been tested. After each snapshot is analyzed,

I the fault status is defined by the token marking in the model. A detailed

description of the model, mathematical properties, and examples are given in

reference [101. A prototype version of the BIT processor [15] was designed

2

24

1 a ! n

to test and verify the models ability to detect most common faults in micro-

processor systems. These results demonstrated the FDN models ability to per-

form on-line fault diagnostics without disturbing the system's operation. The

complexity of the FDN model depends on the number and types of faults to be

diagnosed. By solving the model for varies input strings (bus activities),

the model can be used to throughly test fault diagnostic procedure before sys-

tem implementation. This is an important application of the model in critical

environments.

* 25

I.

Ii
S

0 25

III. Personnel Supported and Degrees Granted

During the three year duration of the grant, a considerable number of

students were supported and many of these students received degrees with research

topics stemming from the research sponsored. A detailed list of the students

supported follows:

Name Degree Granted

Glenn Dunn M.S.E.E.

Hsin Chia Fu Ph.D.

Tony Stevens Ph.D.S/
Mario Chavez M.S.E.E. (Ph.D. Pending)

Bruce Malm M.S.E.E. (Ph.D. Pending)

David Comer B.S.E.E.

Steven Castillo B.S.E.E.

Bruce Erickson B.S.E.E.

Jay Lory B.S.E.E. (Pending)

Martin Small B.S.E.E. (Pending)

Jay Jordan Ph.D. (Pending)

Besides these students, the principal investigator, Dr. G.M. Flachs was sup-

ported twenty-five percent of the academic year throughout the duration of

the grant.

12
4

I 26

t

IV. Publications

Several publications, dissertations, and technical reports have resulted

from the sponsored research. Several major publications are currently being

prepared from the dissertations supported by this grant. These publications

will be reported later.

1. 1979 "Real-Time Processing with Multiple Bit-Slice Microprocessors,"
9

U.S. Army Workshop on Microprocessors, Pingree Park, Colorado,

August 22-24, 1979.

2. 1979 "State-of-the-Art in Real-Time Tracking," U.S.A.F. Workshop on
9

Tracking Systems, U.S.A.F. Academy, Colorado Springs, Sept. 1979.

3. 1980 "High Speed Multiprocessors and Applications," Proceedings of 1980

Joint Automatic Control Conference (JACC-80), Vol. 1, pp. WP4-A1

through WP4-A8, San Francisco, California, Aug. 1980.

4. 1980 "Multi-Intensity Picture Reconstruction from Projections," 1980

Government Electrocircuit Applications Digest (COMAC-80), pp. 93-

96, Houston, Texas, Nov. 1980.

5. 1980 "A Communications Unit for Multiprocessing Systems," Glenn A. Dunn,

M.S.E.E. Technical Report, New Mexico State University, Laa Cruces,

New Mexico.

6. 1980 "A Virtual Anything Communications Channel," John Kates, M.S.EE.

Technical Report, New Mexico State University, Las Cruces, New

Mexico.

7. 1980 "Interactively Implementing Microprocessor System Designs," Patricia

Grubel, M.S.E.E. Technical Report, how Mexico State University,

Las Cruces, New Mexico.

27

8. 1980 "Real-Time Multi-Intensity Image Reconstruction from Projections

for Multi-Processor Implementation," Ph.D. Dissertation, Anthony

K. Stevens, New Mexico State University, Las Cruces, New Mexico.

9. 1981 "The Intercommunications of a Real-Time Distributive Architecture,"

Bruce N. Malm, M.S.E.E. Technical Report, New Mexico State Univer-

sity, Las Cruces, New Mexico.

10. 1981 "On-Line Fault Diagnostics of Multiple Microprocessor Systems," Ph.D.

Dissertation, Hsin Chia Fu, New Mexico State University, Las Cruces,

New Mexico.

11. 1981 "A Statistical Approach to Image Segmentation," Proceedings of

Pattern Recognition and Image Proc. Conf., Dallas, Texas, Aug. 1981.

12. 1981 "Real-Time Statistical Transfer for IR Focal Plane Array," Proc. of

SPIE's 25th International Symposium, Vol. 302, San Diego, Calif.,

Aug. 1981.

13. 1981 "Multiprocessor System Design for Real-Time Processor Problems,"

Proc. of ELECTRO-81 Tercer Seminario de Ingenieria Electronica,

Nov. 9-13, 1981.

14 1981 "D Flip/Flop Substracts Frequencies," EDN, p. 199, April 15, 1981.

15. 1981 "Real-Time Fault Diagnostics for Multiple Microprocessor Systems,"

1981 Real-Time Systems Symposium, Dec. 1981.

Publications In Preparation

16. "Unique Multi-Intensity Pictures With Respect to Two Projections,"

Submitted for publications to IEEE Transactions.

17. "Concurrent JCL for Loosely Coupled Distributed System," In preparation.

18. "A Low Cost Multi-Microcomputer Architecture," In preparation.

28

19. "A Dynamic Model for Multiple Microcomputer Applications," Bruce Malm,

Ph.D. dissertation in preparation, New Mexico State University, Las

Cruces, New Mexico.

20. "Architectural Design of Multiple Microcomputer Systems," Mario Chavez,

Ph.D. dissertation in preparation, New Mexico State University, Las

Cruces, New Mexico.

21. "A Dynamic Model for Multiple Microcomputer Communication Systems,"

Elliot Bergsagel, Ph.D. dissertation currently in progress, New MexicoI

State University, Las Cruces, New Mexico.

'29

, 291

